Venn diagram

Compare your dogs to Cobalt Select one to begin:

“Cobalt”
Vallecito's Cobalt

Mixed Ancestry

No bio has been provided yet

Place of Birth

Fruitland, Washington, USA

Current Location

Fruitland, Washington, USA

From

Fruitland, Washington, USA

This dog has been viewed and been given 0 wags

Registration

National American Alsatian Registry (NAAC): BO1001-7

Genetic Breed Result

Loading...

German Shepherd Dog

German Shepherds are confident, courageous dogs with a keen sense of smell and notable intelligence. These are active working dogs who excel at many canine sports and tasks -- they are true utility dogs! Their versatility combined with their loyal companionship has them consistently listed as one of the most popular breeds in the United States.

Learn More

Labrador Retriever

The Labrador Retriever was bred for hunting and excelled in retrieving game after it was shot down. Known for its gentle disposition and loyalty, the Labrador Retriever has become a favorite of families and breeders alike.

Learn More

Alaskan Malamute

The Alaskan Malamute is a large, fluffy spitz breed recognized as being one of the most ancient breeds of dogs. The forebears to the modern Malamute crossed the Bering Strait with their owners over 4,000 years ago. Their size, thick coat, and work drive make them ideal dogs for pulling sleds, but they also make amicable companions.

Learn More

Irish Wolfhound

The Irish Wolfhound is about as big as they come. These gentle giants have served as hunting dogs for thousands of years. They make wonderful companions, especially for kids.

Learn More

Loading...

Start a conversation! Message this dog’s owner.

Loading...

DNA Breed Origins

Breed colors:
German Shepherd Dog
Labrador Retriever
Alaskan Malamute
Irish Wolfhound

Explore

Health Summary

warn icon

Cobalt has one variant that you should let your vet know about.

ALT Activity

warn icon

Cobalt inherited one copy of the variant we tested

Why is this important to your vet?

Cobalt has one copy of a variant associated with reduced ALT activity as measured on veterinary blood chemistry panels. Please inform your veterinarian that Cobalt has this genotype, as ALT is often used as an indicator of liver health and Cobalt is likely to have a lower than average resting ALT activity. As such, an increase in Cobalt’s ALT activity could be evidence of liver damage, even if it is within normal limits by standard ALT reference ranges.

What is ALT Activity?

Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream.

Breed-Relevant Genetic Conditions

good icon

Multiple Drug Sensitivity (ABCB1)

Identified in German Shepherd Dogs

Factor VII Deficiency (F7 Exon 5)

Identified in Alaskan Malamutes

Hemophilia A (F8 Exon 11, German Shepherd Variant 1)

Identified in German Shepherd Dogs

Hemophilia A (F8 Exon 1, German Shepherd Variant 2)

Identified in German Shepherd Dogs

Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)

Identified in German Shepherd Dogs

Canine Elliptocytosis (SPTB Exon 30)

Identified in Labrador Retrievers

Pyruvate Kinase Deficiency (PKLR Exon 7, Labrador Retriever Variant)

Identified in Labrador Retrievers

Platelet Factor X Receptor Deficiency, Scott Syndrome (TMEM16F)

Identified in German Shepherd Dogs

Progressive Retinal Atrophy, prcd (PRCD Exon 1)

Identified in Labrador Retrievers

Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2 (TTC8)

Identified in Labrador Retrievers

Progressive Retinal Atrophy, crd4/cord1 (RPGRIP1)

Identified in Labrador Retrievers

Day Blindness (CNGB3 Deletion, Alaskan Malamute Variant)

Identified in Alaskan Malamutes

Day Blindness (CNGA3 Exon 7, German Shepherd Variant)

Identified in German Shepherd Dogs

Day Blindness (CNGA3 Exon 7, Labrador Retriever Variant)

Identified in Labrador Retrievers

Macular Corneal Dystrophy, MCD (CHST6)

Identified in Labrador Retrievers

Urate Kidney & Bladder Stones (SLC2A9)

Identified in German Shepherd Dogs and Labrador Retrievers

Primary Ciliary Dyskinesia, PCD (NME5, Alaskan Malamute Variant)

Identified in Alaskan Malamutes

Anhidrotic Ectodermal Dysplasia (EDA Intron 8)

Identified in German Shepherd Dogs

Renal Cystadenocarcinoma and Nodular Dermatofibrosis (FLCN Exon 7)

Identified in German Shepherd Dogs

Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 3, German Shepherd Variant)

Identified in German Shepherd Dogs

Alexander Disease (GFAP)

Identified in Labrador Retrievers

Degenerative Myelopathy, DM (SOD1A)

Identified in German Shepherd Dogs and Labrador Retrievers

Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)

Identified in Alaskan Malamutes

Narcolepsy (HCRTR2 Intron 6, Labrador Retriever Variant)

Identified in Labrador Retrievers

Ullrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant)

Identified in Labrador Retrievers

Centronuclear Myopathy, CNM (PTPLA)

Identified in Labrador Retrievers

Exercise-Induced Collapse, EIC (DNM1)

Identified in Labrador Retrievers

X-Linked Myotubular Myopathy (MTM1, Labrador Retriever Variant)

Identified in Labrador Retrievers

Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant)

Identified in Labrador Retrievers

Ichthyosis (ASPRV1 Exon 2, German Shepherd Variant)

Identified in German Shepherd Dogs

Hereditary Nasal Parakeratosis, HNPK (SUV39H2)

Identified in Labrador Retrievers

Skeletal Dysplasia 2, SD2 (COL11A2, Labrador Retriever Variant)

Identified in Labrador Retrievers

Stargardt Disease (ABCA4 Exon 28, Labrador Retriever Variant)

Identified in Labrador Retrievers

Additional Genetic Conditions

good icon

Explore

Traits

Explore the genetics behind your dog’s appearance and size.

Coat Color

Coat Color

Other Coat Traits

Other Coat Traits

Other Body Features

Other Body Features

Body Size

Body Size

Performance

Performance

Loading...

Explore

Through Cobalt’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

A1b

Haplotype

A253

Map

A1b

Vallecito's Cobalt’s Haplogroup

This female lineage was very likely one of the original lineages in the wolves that were first domesticated into dogs in Central Asia about 15,000 years ago. Since then, the lineage has been very successful and travelled the globe! Dogs from this group are found in ancient Bronze Age fossils in the Middle East and southern Europe. By the end of the Bronze Age, it became exceedingly common in Europe. These dogs later became many of the dogs that started some of today's most popular breeds, like German Shepherds, Pugs, Whippets, English Sheepdogs and Miniature Schnauzers. During the period of European colonization, the lineage became even more widespread as European dogs followed their owners to far-flung places like South America and Oceania. It's now found in many popular breeds as well as village dogs across the world!

A253

Vallecito's Cobalt’s Haplotype

Part of the large A1b haplogroup, this rare haplotype occurs in dogs with European ancestry.

A1b is the most common haplogroup found in German Shepherds.

Loading...

Explore

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that Cobalt inherited from her mom and dad? Check out her breed breakdown.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Cobalt is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.

Loading...

Explore