Venn diagram

Compare your dogs to Hailee Select one to begin:

“Hailee”
Ultra Quest Squash Blossom

Labrador Retriever

No bio has been provided yet

Place of Birth

El Cajon, California, USA

Current Location

Aguanga, California, USA

From

El Cajon, California, USA

This dog has been viewed and been given 0 wags

Registration

American Kennel Club (AKC): SS25485501

Genetic Breed Result

Loading...

Labrador Retriever

The Labrador Retriever was bred for hunting and excelled in retrieving game after it was shot down. Known for its gentle disposition and loyalty, the Labrador Retriever has become a favorite of families and breeders alike.

Learn More

Loading...

Start a conversation! Message this dog’s owner.

Loading...

Explore

Health Summary

warn icon

Hailee inherited one variant that you should learn more about.

Macular Corneal Dystrophy, MCD

warn icon

Hailee inherited one copy of the variant we tested

What does this result mean?

This variant should not impact Hailee’s health. This variant is inherited in an autosomal recessive manner, meaning that a dog needs two copies of the variant to show signs of this condition. Hailee is unlikely to develop this condition due to this variant because she only has one copy of the variant.

Impact on Breeding

Your dog carries this variant and will pass it on to ~50% of her offspring. You can email breeders@embarkvet.com to discuss with a genetic counselor how the genotype results should be applied to a breeding program.

What is Macular Corneal Dystrophy, MCD?

This condition causes abnormal corneal accumulation of complex carbohydrates called glycosaminoglycans. The cornea is the surface of the eye.

Breed-Relevant Genetic Conditions

good icon

Canine Elliptocytosis (SPTB Exon 30)

Identified in Labrador Retrievers

Pyruvate Kinase Deficiency (PKLR Exon 7, Labrador Retriever Variant)

Identified in Labrador Retrievers

Progressive Retinal Atrophy, prcd (PRCD Exon 1)

Identified in Labrador Retrievers

Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2 (TTC8)

Identified in Labrador Retrievers

Progressive Retinal Atrophy, crd4/cord1 (RPGRIP1)

Identified in Labrador Retrievers

Day Blindness (CNGA3 Exon 7, Labrador Retriever Variant)

Identified in Labrador Retrievers

Urate Kidney & Bladder Stones (SLC2A9)

Identified in Labrador Retrievers

Alexander Disease (GFAP)

Identified in Labrador Retrievers

Degenerative Myelopathy, DM (SOD1A)

Identified in Labrador Retrievers

Narcolepsy (HCRTR2 Intron 6, Labrador Retriever Variant)

Identified in Labrador Retrievers

Ullrich-like Congenital Muscular Dystrophy (COL6A3 Exon 10, Labrador Retriever Variant)

Identified in Labrador Retrievers

Centronuclear Myopathy, CNM (PTPLA)

Identified in Labrador Retrievers

Exercise-Induced Collapse, EIC (DNM1)

Identified in Labrador Retrievers

X-Linked Myotubular Myopathy (MTM1, Labrador Retriever Variant)

Identified in Labrador Retrievers

Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant)

Identified in Labrador Retrievers

Hereditary Nasal Parakeratosis, HNPK (SUV39H2)

Identified in Labrador Retrievers

Skeletal Dysplasia 2, SD2 (COL11A2, Labrador Retriever Variant)

Identified in Labrador Retrievers

Stargardt Disease (ABCA4 Exon 28, Labrador Retriever Variant)

Identified in Labrador Retrievers

Additional Genetic Conditions

good icon

Explore

Traits

Explore the genetics behind your dog’s appearance and size.

Coat Color

Coat Color

Other Coat Traits

Other Coat Traits

Other Body Features

Other Body Features

Body Size

Body Size

Performance

Performance

Loading...

Explore

Through Hailee’s mitochondrial DNA we can trace her mother’s ancestry back to where dogs and people first became friends. This map helps you visualize the routes that her ancestors took to your home. Their story is described below the map.

Haplogroup

A2

Haplotype

A29a

Map

A2

Ultra Quest Squash Blossom’s Haplogroup

A2 is a very ancient maternal line. Most likely it was one of the major female lines that contributed to the very first domesticated dogs in Central Asia about 15,000 years ago. Some of the line stayed in Central Asia to the present day, and frequently appear as Tibetan Mastiffs and Akitas. Those that escaped the mountains of Central Asia sought out other cold spots, and are now found among Alaskan Malamutes and Siberian Huskies. This lineage is also occasionally found in several common Western breeds, such as German Shepherds and Labrador Retrievers. Curiously, all New Guinea Singing Dogs descend from this line. These are an ancient and very interesting breed found in the mountains of Papua New Guinea. Unfortunately, they are now endangered. They are closely related to the Australian dingo, so you could say its cousins are dingos! This line is also common in village dogs in Southeast and East Asia. Unlike many other lineages, A2 did not spread across the whole world, probably because it did not have the opportunity to hitch its wagon to European colonialism - or because these dogs just prefer hanging out in mountains, tundras, islands, and other hard-to-reach places!

A29a

Ultra Quest Squash Blossom’s Haplotype

Part of the A2 haplogroup, this haplotype occurs most commonly in Siberian Huskies, Alaskan Malamutes, Labrador Retrievers, and village dogs from Alaska.

Dingos commonly possess this haplogroup.

Loading...

Explore

The Paternal Haplotype reveals a dog’s deep ancestral lineage, stretching back thousands of years to the original domestication of dogs.

Are you looking for information on the breeds that Hailee inherited from her mom and dad? Check out her breed breakdown.

Paternal Haplotype is determined by looking at a dog’s Y-chromosome—but not all dogs have Y-chromosomes!

Why can’t we show Paternal Haplotype results for female dogs?

All dogs have two sex chromosomes. Female dogs have two X-chromosomes (XX) and male dogs have one X-chromosome and one Y-chromosome (XY). When having offspring, female (XX) dogs always pass an X-chromosome to their puppy. Male (XY) dogs can pass either an X or a Y-chromosome—if the puppy receives an X-chromosome from its father then it will be a female (XX) puppy and if it receives a Y-chromosome then it will be a male (XY) puppy. As you can see, Y-chromosomes are passed down from a male dog only to its male offspring.

Since Hailee is a female (XX) dog, she has no Y-chromosome for us to analyze and determine a paternal haplotype.

Loading...

Explore